Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 601
Preview
$$U_{601}(x, y) = \frac{- \sqrt{- \frac{x \left(\sqrt{4 y + 1} + 1\right)^{3}}{2} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{2 x}$$
Pyramid 602
Preview
$$U_{602}(x, y) = - \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{8 x - 2 \left(\sqrt{4 y + 1} + 1\right)^{2}}$$
Pyramid 603
Preview
$$U_{603}(x, y) = \frac{4 x + \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{2}}{\left(\sqrt{4 y + 1} + 1\right)^{2}}$$
Pyramid 604
Preview
$$U_{604}(x, y) = \frac{\sqrt{4 x + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{\sqrt{4 y + 1} + 1}$$
Pyramid 605
Preview
$$U_{605}(x, y) = \frac{- \sqrt{4 x + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{\sqrt{4 y + 1} + 1}$$
Pyramid 606
Preview
$$U_{606}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}}{3 \sqrt{x} \sqrt{1 - 4 y}}$$
Pyramid 607
Preview
$$U_{607}(x, y) = \frac{- \sqrt{- \frac{4 x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + \frac{1}{\left(1 - 4 y\right)^{2}}} + \frac{1}{1 - 4 y}}{2 x}$$
Pyramid 608
Preview
$$U_{608}(x, y) = - \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}} \left(x - \frac{1}{1 - 4 y}\right)}$$
Pyramid 609
Preview
$$U_{609}(x, y) = \left(1 - 4 y\right) \left(x + \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}}}\right)$$
Pyramid 610
Preview
$$U_{610}(x, y) = \frac{\sqrt{1 - 4 y} \left(\sqrt{4 x + \frac{1}{\left(1 - 4 y\right)^{2}}} + \frac{1}{1 - 4 y}\right)}{2}$$
Pyramid 611
Preview
$$U_{611}(x, y) = \frac{\sqrt{1 - 4 y} \left(- \sqrt{4 x + \frac{1}{\left(1 - 4 y\right)^{2}}} + \frac{1}{1 - 4 y}\right)}{2}$$
Pyramid 612
Preview
$$U_{612}(x, y) = \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) \left(x + 1\right)$$
Pyramid 613
Preview
$$U_{613}(x, y) = \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Pyramid 614
Preview
$$U_{614}(x, y) = - \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Pyramid 615
help
Preview
$$U_{615}(x, y) = \frac{1 - \frac{4 \sin^{2}{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}}{1 - x}$$
Pyramid 616
help
Preview
$$U_{616}(x, y) = x - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + 1$$
Pyramid 617
Preview
$$U_{617}(x, y) = \frac{\sqrt{4 x + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Pyramid 618
Preview
$$U_{618}(x, y) = - \frac{\sqrt{4 x + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Pyramid 619
Preview
$$U_{619}(x, y) = \frac{1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}}{\left(1 - x\right)^{2}}$$
Pyramid 620
Preview
$$U_{620}(x, y) = x + \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Page:
1
...
28
29
30
31
32
33
34
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less