Generating function
$$U_{642}(x, y) = 2 x + \sqrt{4 x^{2} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}$$
Explicit formula
$$T_{642}(n, m, k) = \begin{cases}1&\text{if n=0, m=0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{n} k {\binom{- \frac{k}{2} + \frac{n}{2} - 1}{n - 1}}}{2 n}&\text{if m=0, n>0} ,\ \\\frac{\left(-1\right)^{m - 1} \cdot 4^{n} k {\binom{\frac{k}{2} + \frac{n}{2} - 1}{n}} {\binom{- k + 2 m + n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #642?