Generating function
$$U_{646}(x, y) = \frac{\left(x + 1\right)^{2} \left(\sqrt{4 y + 1} + 1\right)}{2}$$
Explicit formula
$$T_{646}(n, m, k) = \begin{cases}\frac{\left(-1\right)^{m - 1} k {\binom{2 k}{n}} {\binom{- k + 2 m - 1}{m - 1}}}{m}&\text{if m>0} ,\ \\{\binom{2 k}{n}}&\text{if m==0} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
2 | 2 | -2 | 4 | -1 | 28 | -84 |
1 | 1 | -1 | 2 | -5 | 14 | -42 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #646?