Generating function
$$U_{656}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) \left(\sqrt{4 x + 1} + 1\right)}{2}$$
Explicit formula
$$T_{656}(n, m, k) = \begin{cases}1&\text{if n = 0,m = 0} ,\ \\\frac{\left(-1\right)^{m - 1} \left(-1\right)^{n - 1} k^{2} {\binom{- k + 3 m - 1}{m - 1}} {\binom{- k + 2 n - 1}{n - 1}}}{m n}&\text{if n > 0,m > 0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{- k + 3 m - 1}{m - 1}}}{m}&\text{if n = 0,m > 0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if m = 0, n > 0} \end{cases} $$
1 | 1 | -2 | 7 | -3 | 143 | -728 |
1 | 1 | -2 | 7 | -3 | 143 | -728 |
-1 | -1 | 2 | -7 | 3 | -143 | 728 |
2 | 2 | -4 | 14 | -6 | 286 | -1456 |
-5 | -5 | 1 | -35 | 15 | -715 | 364 |
14 | 14 | -28 | 98 | -42 | 2002 | -10192 |
-42 | -42 | 84 | -294 | 126 | -6006 | 30576 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #656?