Generating function
$$U_{659}(x, y) = \frac{1 - \sqrt{- 4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{3} + 1}}{2 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}$$
Explicit formula
$$T_{659}(n, m, k) = \begin{cases}\frac{\left(-1\right)^{m - 1} k \left(k + 3 n\right) {\binom{k + 2 n - 1}{n}} {\binom{- k + 3 m - 3 n - 1}{m - 1}}}{m \left(k + n\right)}&\text{if m>0} ,\ \\\frac{k {\binom{k + 2 n - 1}{n}}}{k + n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k \left(k + 3 n\right) {\binom{k + 2 n - 1}{n}} {\binom{- k + 3 m - 3 n - 1}{m - 1}}}{m \left(k + n\right)} \end{cases} $$
| 1 | 1 | -2 | 7 | -3 | 143 | -728 |
| 1 | 4 | -2 | 8 | -35 | 168 | -858 |
| 2 | 14 | 14 | 0 | -14 | 98 | -588 |
| 5 | 5 | 125 | 5 | 0 | 1 | -175 |
| 14 | 182 | 728 | 91 | 182 | 0 | 0 |
| 42 | 672 | 3696 | 8064 | 588 | 672 | 0 |
| 132 | 2508 | 17556 | 55176 | 7524 | 35112 | 2508 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #659?