Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 561
Preview
$$U_{561}(x, y) = \frac{\sqrt{\frac{4 x}{\left(1 - y\right)^{3}} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Pyramid 562
Preview
$$U_{562}(x, y) = \frac{x}{\left(1 - y\right)^{3}} + \frac{1}{1 - y}$$
Pyramid 563
Preview
$$U_{563}(x, y) = - \frac{1}{\left(1 - y\right) \left(\frac{x}{\left(1 - y\right)^{3}} - 1\right)}$$
Pyramid 564
Preview
$$U_{564}(x, y) = \frac{\left(1 - y\right)^{3} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{4}} + 1}\right)}{2 x}$$
Pyramid 565
Preview
$$U_{565}(x, y) = \frac{1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}}{\left(1 - y\right)^{2}}$$
Pyramid 566
Preview
$$U_{566}(x, y) = \frac{\sqrt{\frac{4 x}{\left(1 - y\right)^{6}} + \frac{1}{\left(1 - y\right)^{4}}}}{2} + \frac{1}{2 \left(1 - y\right)^{2}}$$
Pyramid 567
Preview
$$U_{567}(x, y) = \frac{x}{\left(1 - y\right)^{6}} + \frac{1}{\left(1 - y\right)^{2}}$$
Pyramid 568
Preview
$$U_{568}(x, y) = - \frac{1}{\left(1 - y\right)^{2} \left(\frac{x}{\left(1 - y\right)^{6}} - 1\right)}$$
Pyramid 569
Preview
$$U_{569}(x, y) = \frac{\left(1 - y\right)^{6} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{8}} + 1}\right)}{2 x}$$
Pyramid 570
Preview
$$U_{570}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}\right)}{2 y}$$
Pyramid 571
Preview
$$U_{571}(x, y) = \frac{\sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Pyramid 572
Preview
$$U_{572}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + \frac{1 - \sqrt{1 - 4 y}}{2 y}$$
Pyramid 573
Preview
$$U_{573}(x, y) = \frac{\sqrt{1 - 4 y} - 1}{y \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} - 2\right)}$$
Pyramid 574
Preview
$$U_{574}(x, y) = \frac{y^{3} \left(4 - 4 \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{4}}{4 y^{4}} + 1}\right)}{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}$$
Pyramid 575
Preview
$$U_{575}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}}$$
Pyramid 576
Preview
$$U_{576}(x, y) = \frac{\sqrt{\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}}}{2} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{4 y^{2}}$$
Pyramid 577
Preview
$$U_{577}(x, y) = \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{2 y^{2}}$$
Pyramid 578
Preview
$$U_{578}(x, y) = \frac{2 y + \sqrt{1 - 4 y} - 1}{y^{2} \left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - 2\right)}$$
Pyramid 579
Preview
$$U_{579}(x, y) = \frac{y^{6} \left(4 - 4 \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}{4 y^{8}} + 1}\right)}{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}$$
Pyramid 580
Preview
$$U_{580}(x, y) = \frac{1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}}{\sqrt{1 - 4 y}}$$
Page:
1
...
26
27
28
29
30
31
32
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less