Pyramid #571
Generating function
$$U_{571}(x, y) = \frac{\sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Explicit formula
$$T_{571}(n, m, k) = \begin{cases}\frac{\left(-1\right)^{n - 1} k \left(k + n\right) {\binom{- k + 2 n - 1}{n - 1}} {\binom{k + 2 m + n - 1}{m}}}{n \left(k + m + n\right)}&\text{if n>0} ,\ \\\frac{k {\binom{k + 2 m + n - 1}{m}}}{k + m + n}&\text{if n==0 } \end{cases} $$
Data table
1 1 2 5 14 42 132
1 2 5 14 42 132 429
-1 -3 -9 -28 -90 -297 -1001
2 8 28 96 330 1144 4004
-5 -25 -100 -375 -1375 -5005 -18200
14 84 378 1540 6006 22932 86632
-42 -294 -1470 -6468 -26754 -107016 -419832
Export
expand_less