Generating function
$$U_{561}(x, y) = \frac{\sqrt{\frac{4 x}{\left(1 - y\right)^{3}} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Explicit formula
$$T_{561}(n, m, k) = \begin{cases}\frac{k {\binom{k + m + n - 1}{m}}}{k + n}&\text{if n==0 } ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}} {\binom{k + m + n - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
-1 | -3 | -6 | -1 | -15 | -21 | -28 |
2 | 8 | 2 | 4 | 7 | 112 | 168 |
-5 | -25 | -75 | -175 | -35 | -63 | -105 |
14 | 84 | 294 | 784 | 1764 | 3528 | 6468 |
-42 | -294 | -1176 | -3528 | -882 | -19404 | -38808 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #561?