Generating function
$$U_{576}(x, y) = \frac{\sqrt{\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}}}{2} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{4 y^{2}}$$
Explicit formula
$$T_{576}(n, m, k) = \begin{cases}\frac{k {\binom{2 k + 2 m + 2 n}{m}}}{k + m + n}&\text{if n==0 } ,\ \\\frac{\left(-1\right)^{n - 1} k \left(k + n\right) {\binom{- k + 2 n - 1}{n - 1}} {\binom{2 k + 2 m + 2 n}{m}}}{n \left(k + m + n\right)}&\text{if n>0} \end{cases} $$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
-1 | -6 | -27 | -110 | -429 | -1638 | -6188 |
2 | 16 | 88 | 416 | 1820 | 7616 | 31008 |
-5 | -50 | -325 | -1750 | -8500 | -38760 | -169575 |
14 | 168 | 1260 | 7616 | 40698 | 201096 | 942172 |
-42 | -588 | -4998 | -33516 | -195510 | -1041348 | -5206740 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #576?