Pyramid #576
Generating function
$$U_{576}(x, y) = \frac{\sqrt{\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}}}{2} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{4 y^{2}}$$
Explicit formula
$$T_{576}(n, m, k) = \begin{cases}\frac{k {\binom{2 k + 2 m + 2 n}{m}}}{k + m + n}&\text{if n==0 } ,\ \\\frac{\left(-1\right)^{n - 1} k \left(k + n\right) {\binom{- k + 2 n - 1}{n - 1}} {\binom{2 k + 2 m + 2 n}{m}}}{n \left(k + m + n\right)}&\text{if n>0} \end{cases} $$
Data table
1 2 5 14 42 132 429
1 4 14 48 165 572 2002
-1 -6 -27 -110 -429 -1638 -6188
2 16 88 416 1820 7616 31008
-5 -50 -325 -1750 -8500 -38760 -169575
14 168 1260 7616 40698 201096 942172
-42 -588 -4998 -33516 -195510 -1041348 -5206740
Export
expand_less