Generating function
$$U_{575}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}}$$
Explicit formula
$$T_{575}(n, m, k) = \begin{cases}\frac{k {\binom{2 k + 2 m}{m}}}{k + m}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k^{2} {\binom{2 k + 2 m}{m}} {\binom{- k + 3 n - 1}{n - 1}}}{n \left(k + m\right)}&\text{if n>0} \end{cases} $$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
1 | 2 | 5 | 14 | 42 | 132 | 429 |
-2 | -4 | -10 | -28 | -84 | -264 | -858 |
7 | 14 | 35 | 98 | 294 | 924 | 3003 |
-30 | -60 | -150 | -420 | -1260 | -3960 | -12870 |
143 | 286 | 715 | 2002 | 6006 | 18876 | 61347 |
-728 | -1456 | -3640 | -10192 | -30576 | -96096 | -312312 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #575?