Generating function
$$U_{565}(x, y) = \frac{1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}}{\left(1 - y\right)^{2}}$$
Explicit formula
$$T_{565}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}} {\binom{2 k + m - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
-2 | -4 | -6 | -8 | -1 | -12 | -14 |
7 | 14 | 21 | 28 | 35 | 42 | 49 |
-3 | -6 | -9 | -12 | -15 | -18 | -21 |
143 | 286 | 429 | 572 | 715 | 858 | 1001 |
-728 | -1456 | -2184 | -2912 | -364 | -4368 | -5096 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #565?