Generating function
$$U_{602}(x, y) = - \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{8 x - 2 \left(\sqrt{4 y + 1} + 1\right)^{2}}$$
Explicit formula
$$T_{602}(n, m, k) = \begin{cases}{\binom{k + n - 1}{n}}&\text{if m=0 } ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - 2 n\right) {\binom{k + n - 1}{n}} {\binom{- k + 2 m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
1 | -1 | 2 | -5 | 14 | -42 | 132 |
1 | -3 | 9 | -28 | 9 | -297 | 1001 |
1 | -5 | 2 | -75 | 275 | -1001 | 364 |
1 | -7 | 35 | -154 | 637 | -2548 | 9996 |
1 | -9 | 54 | -273 | 126 | -5508 | 23256 |
1 | -11 | 77 | -44 | 2244 | -10659 | 48279 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #602?