Generating function
$$U_{604}(x, y) = \frac{\sqrt{4 x + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{\sqrt{4 y + 1} + 1}$$
Explicit formula
$$T_{604}(n, m, k) = \begin{cases}1&\text{if m=0,n=0} ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - 4 n\right) {\binom{- k + 2 m + 4 n - 1}{m - 1}}}{m}&\text{if n = 0,m > 0} ,\ \\\frac{\left(-1\right)^{m - 1} k \left(k - 4 n\right) {\binom{k - n - 1}{n - 1}} {\binom{- k + 2 m + 4 n - 1}{m - 1}}}{m n}&\text{if n > 0,m > 0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if m = 0,n > 0} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
1 | -3 | 9 | -28 | 9 | -297 | 1001 |
-1 | 7 | -35 | 154 | -637 | 2548 | -9996 |
2 | -22 | 154 | -88 | 4488 | -21318 | 96558 |
-5 | 75 | -675 | 475 | -28875 | 15939 | -82225 |
14 | -266 | 2926 | -24472 | 1729 | -108927 | 6317766 |
-42 | 966 | -12558 | 121716 | -98049 | 6947472 | -44799216 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #604?