Generating function
$$U_{620}(x, y) = x + \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Explicit formula
$$T_{620}(n, m, k) = \begin{cases}0&\text{if n = 0,m = 0} ,\ \\\frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}}}{n}&\text{if m = 0, n > 0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{2 k - n - 1}{n}} {\binom{- k + 3 m + n - 1}{m - 1}}}{m} \end{cases} $$
0 | 1 | -2 | 7 | -3 | 143 | -728 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 1 | -3 | 12 | -55 | 273 | -1428 |
2 | -4 | 14 | -6 | 286 | -1456 | 7752 |
-5 | 15 | -6 | 275 | -1365 | 714 | -3876 |
14 | -56 | 252 | -1232 | 637 | -34272 | 189924 |
-42 | 21 | -105 | 546 | -294 | 162792 | -92169 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #620?