Pyramid #620
Generating function
$$U_{620}(x, y) = x + \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}}{2} - \frac{2 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + \frac{1}{2}$$
Explicit formula
$$T_{620}(n, m, k) = \begin{cases}0&\text{if n = 0,m = 0} ,\ \\\frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}}}{n}&\text{if m = 0, n > 0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{2 k - n - 1}{n}} {\binom{- k + 3 m + n - 1}{m - 1}}}{m} \end{cases} $$
Data table
0 1 -2 7 -3 143 -728
2 0 0 0 0 0 0
-1 1 -3 12 -55 273 -1428
2 -4 14 -6 286 -1456 7752
-5 15 -6 275 -1365 714 -3876
14 -56 252 -1232 637 -34272 189924
-42 21 -105 546 -294 162792 -92169
Export
expand_less