Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 441
Preview
$$U_{441}(x, y) = \frac{\left(y + 1\right)^{2}}{\left(1 - x\right)^{2}}$$
Pyramid 442
Preview
$$U_{442}(x, y) = \frac{x^{2} - 2 x - 2 y + \left(x - 1\right) \sqrt{x^{2} - 2 x - 4 y + 1} + 1}{2 y^{2}}$$
Pyramid 443
Preview
$$U_{443}(x, y) = x + \frac{\left(y + 1\right)^{2}}{2} + \frac{\sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}}{2}$$
Pyramid 444
Preview
$$U_{444}(x, y) = x + \frac{\left(y + 1\right)^{2}}{2} - \frac{\sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}}{2}$$
Pyramid 445
Preview
$$U_{445}(x, y) = x + \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Pyramid 446
Preview
$$U_{446}(x, y) = x - \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Pyramid 447
Preview
$$U_{447}(x, y) = \frac{1}{\left(1 - x\right)^{2} \left(1 - y\right)^{3}}$$
Pyramid 448
Preview
$$U_{448}(x, y) = x + \frac{\sqrt{\frac{4 x}{\left(1 - y\right)^{3}} + \frac{1}{\left(1 - y\right)^{6}}}}{2} + \frac{1}{2 \left(1 - y\right)^{3}}$$
Pyramid 449
Preview
$$U_{449}(x, y) = x - \frac{\sqrt{\frac{4 x}{\left(1 - y\right)^{3}} + \frac{1}{\left(1 - y\right)^{6}}}}{2} + \frac{1}{2 \left(1 - y\right)^{3}}$$
Pyramid 450
Preview
$$U_{450}(x, y) = x + \frac{\sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Pyramid 451
Preview
$$U_{451}(x, y) = x - \frac{\sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Pyramid 452
Preview
$$U_{452}(x, y) = \frac{- x - 2 y - \sqrt{x^{2} + 4 x y - 2 x + 1} + 1}{2 y^{2} - 2 y}$$
Pyramid 453
Preview
$$U_{453}(x, y) = \frac{x + \left(y + 1\right)^{2}}{y + 1}$$
Pyramid 454
Preview
$$U_{454}(x, y) = \frac{\left(y + 1\right)^{2} + \sqrt{4 x \left(y + 1\right) + \left(y + 1\right)^{4}}}{2 y + 2}$$
Pyramid 455
Preview
$$U_{455}(x, y) = \frac{\left(y + 1\right)^{2} - \sqrt{4 x \left(y + 1\right) + \left(y + 1\right)^{4}}}{2 y + 2}$$
Pyramid 456
Preview
$$U_{456}(x, y) = \frac{y}{3} + \frac{\left(y + 1\right)^{2}}{9 \sqrt[3]{\frac{x}{2 y + 2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)}}{18 y + 18} + \frac{\left(y + 1\right)^{3}}{27}}} + \sqrt[3]{\frac{x}{2 y + 2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)}}{18 y + 18} + \frac{\left(y + 1\right)^{3}}{27}} + \frac{1}{3}$$
Pyramid 457
Preview
$$U_{457}(x, y) = \frac{1}{\frac{4 y \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3} - y + 1}$$
Pyramid 458
Preview
$$U_{458}(x, y) = - \frac{\left(y + 1\right)^{4}}{x - \left(y + 1\right)^{2}}$$
Pyramid 459
Preview
$$U_{459}(x, y) = \frac{x + \left(y + 1\right)^{4}}{\left(y + 1\right)^{2}}$$
Pyramid 460
Preview
$$U_{460}(x, y) = \frac{\left(y + 1\right)^{4} + \sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{8}}}{2 \left(y + 1\right)^{2}}$$
Page:
1
...
20
21
22
23
24
25
26
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less