Generating function
$$U_{454}(x, y) = \frac{\left(y + 1\right)^{2} + \sqrt{4 x \left(y + 1\right) + \left(y + 1\right)^{4}}}{2 y + 2}$$
Explicit formula
$$T_{454}(n, m, k) = \begin{cases}{\binom{k}{m}}&\text{if n=0} ,\ \\\frac{k {\binom{k - 3 n}{m}} {\binom{k - n - 1}{n - 1}}}{n} \end{cases} $$
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | -2 | 3 | -4 | 5 | -6 | 7 |
-1 | 5 | -15 | 35 | -7 | 126 | -21 |
2 | -16 | 72 | -24 | 66 | -1584 | 3432 |
-5 | 55 | -33 | 143 | -5005 | 15015 | -4004 |
14 | -196 | 147 | -784 | 3332 | -119952 | 379848 |
-42 | 714 | -6426 | 40698 | -20349 | 854658 | -3133746 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #454?