Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 381
Preview
$$U_{381}(x, y) = \frac{y - \sqrt{4 x \left(y + 1\right) + \left(y + 1\right)^{2}} + 1}{2 x}$$
Pyramid 382
Preview
$$U_{382}(x, y) = \frac{y}{3} + \frac{\left(y + 1\right)^{2}}{9 \sqrt[3]{\frac{x \left(y + 1\right)}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{2}\right)} \left(y + 1\right)}{18} + \frac{\left(y + 1\right)^{3}}{27}}} + \sqrt[3]{\frac{x \left(y + 1\right)}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{2}\right)} \left(y + 1\right)}{18} + \frac{\left(y + 1\right)^{3}}{27}} + \frac{1}{3}$$
Pyramid 383
Preview
$$U_{383}(x, y) = \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Pyramid 384
Preview
$$U_{384}(x, y) = - \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Pyramid 385
Preview
$$U_{385}(x, y) = \sqrt[3]{\frac{x}{2 - 2 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{\left(1 - y\right)^{2}}\right)}}{18 - 18 y} + \frac{1}{27 \left(1 - y\right)^{3}}} + \frac{1}{3 - 3 y} + \frac{1}{9 \left(1 - y\right)^{2} \sqrt[3]{\frac{x}{2 - 2 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{\left(1 - y\right)^{2}}\right)}}{18 - 18 y} + \frac{1}{27 \left(1 - y\right)^{3}}}}$$
Pyramid 386
Preview
$$U_{386}(x, y) = \left(x + 1\right) \left(y + 1\right)^{2}$$
Pyramid 387
Preview
$$U_{387}(x, y) = \frac{- y \left(2 x + 2\right) - \sqrt{y \left(- 4 x - 4\right) + 1} + 1}{y^{2} \left(2 x + 2\right)}$$
Pyramid 388
Preview
$$U_{388}(x, y) = \frac{- y^{2} - 2 y - 1}{x y^{2} + 2 x y + x - 1}$$
Pyramid 389
Preview
$$U_{389}(x, y) = \frac{1 - \sqrt{- 4 x y^{4} - 16 x y^{3} - 24 x y^{2} - 16 x y - 4 x + 1}}{2 x y^{2} + 4 x y + 2 x}$$
Pyramid 390
Preview
$$U_{390}(x, y) = \frac{\left(y + 1\right)^{2}}{2} + \frac{\sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}}{2}$$
Pyramid 391
Preview
$$U_{391}(x, y) = \frac{\left(y + 1\right)^{2}}{2} - \frac{\sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}}{2}$$
Pyramid 392
Preview
$$U_{392}(x, y) = \frac{\left(y + 1\right)^{4}}{9 \sqrt[3]{\frac{x \left(y + 1\right)^{2}}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)} \left(y + 1\right)^{2}}{18} + \frac{\left(y + 1\right)^{6}}{27}}} + \frac{\left(y + 1\right)^{2}}{3} + \sqrt[3]{\frac{x \left(y + 1\right)^{2}}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)} \left(y + 1\right)^{2}}{18} + \frac{\left(y + 1\right)^{6}}{27}}$$
Pyramid 393
Preview
$$U_{393}(x, y) = \frac{x + 1}{\sqrt{1 - 4 y}}$$
Pyramid 394
Preview
$$U_{394}(x, y) = \frac{1}{- x + \sqrt{1 - 4 y}}$$
Pyramid 395
Preview
$$U_{395}(x, y) = \frac{\sqrt{1 - 4 y} - \sqrt{- 4 x - 4 y + 1}}{2 x}$$
Pyramid 396
Preview
$$U_{396}(x, y) = \frac{\sqrt{\frac{4 x}{\sqrt{1 - 4 y}} + \frac{1}{1 - 4 y}}}{2} + \frac{1}{2 \sqrt{1 - 4 y}}$$
Pyramid 397
Preview
$$U_{397}(x, y) = - \frac{\sqrt{\frac{4 x}{\sqrt{1 - 4 y}} + \frac{1}{1 - 4 y}}}{2} + \frac{1}{2 \sqrt{1 - 4 y}}$$
Pyramid 398
Preview
$$U_{398}(x, y) = \sqrt[3]{\frac{x}{2 \sqrt{1 - 4 y}} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{1 - 4 y}\right)}}{18 \sqrt{1 - 4 y}} + \frac{1}{27 \left(1 - 4 y\right)^{\frac{3}{2}}}} + \frac{1}{\left(9 - 36 y\right) \sqrt[3]{\frac{x}{2 \sqrt{1 - 4 y}} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{1 - 4 y}\right)}}{18 \sqrt{1 - 4 y}} + \frac{1}{27 \left(1 - 4 y\right)^{\frac{3}{2}}}}} + \frac{1}{3 \sqrt{1 - 4 y}}$$
Pyramid 399
Preview
$$U_{399}(x, y) = \frac{\sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Pyramid 400
Preview
$$U_{400}(x, y) = - \frac{\sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}}{2} + \frac{1 - \sqrt{1 - 4 y}}{4 y}$$
Page:
1
...
17
18
19
20
21
22
23
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less