Generating function
$$U_{455}(x, y) = \frac{\left(y + 1\right)^{2} - \sqrt{4 x \left(y + 1\right) + \left(y + 1\right)^{4}}}{2 y + 2}$$
Explicit formula
$$T_{455}(n, m, k) = \begin{cases}0&\text{if n<k} ,\ \\- \frac{k {\binom{k - 3 n}{m}} {\binom{k - n - 1}{n - 1}}}{n} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 2 | -3 | 4 | -5 | 6 | -7 |
1 | -5 | 15 | -35 | 7 | -126 | 21 |
-2 | 16 | -72 | 24 | -66 | 1584 | -3432 |
5 | -55 | 33 | -143 | 5005 | -15015 | 4004 |
-14 | 196 | -147 | 784 | -3332 | 119952 | -379848 |
42 | -714 | 6426 | -40698 | 20349 | -854658 | 3133746 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #455?