Generating function
$$U_{444}(x, y) = x + \frac{\left(y + 1\right)^{2}}{2} - \frac{\sqrt{4 x \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}}{2}$$
Explicit formula
$$T_{444}(n, m, k) = \begin{cases}1&\text{if n<2*k} ,\ \\- \frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\- \frac{2 k {\binom{2 k - 2 n - 1}{m - 1}} {\binom{2 k - n - 1}{n}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -2 | 3 | -4 | 5 | -6 | 7 |
-2 | 8 | -2 | 4 | -7 | 112 | -168 |
5 | -3 | 105 | -28 | 63 | -126 | 231 |
-14 | 112 | -504 | 168 | -462 | 11088 | -24024 |
42 | -42 | 231 | -924 | 3003 | -84084 | 21021 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #444?