Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 481
Preview
$$U_{481}(x, y) = \frac{\left(y + 1\right)^{2} \left(- 2 x - \sqrt{1 - 4 x} + 1\right)}{2 x^{2}}$$
Pyramid 482
Preview
$$U_{482}(x, y) = \frac{- x^{2} + x \sqrt{x^{2} + 2 y \sqrt{1 - 4 x} + y \left(4 x - 2\right)} - y \sqrt{1 - 4 x} + y \left(1 - 2 x\right)}{y^{2} \sqrt{1 - 4 x} + y^{2} \left(2 x - 1\right)}$$
Pyramid 483
Preview
$$U_{483}(x, y) = \frac{\left(x + \left(y + 1\right)^{2}\right)^{2}}{\left(y + 1\right)^{2}}$$
Pyramid 484
Preview
$$U_{484}(x, y) = \frac{\frac{2 x}{3} + \frac{\left(y + 1\right)^{4}}{9}}{\sqrt[3]{\frac{x^{2}}{2 \left(y + 1\right)^{2}} + \frac{\sqrt{3} x \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)}}{18 \left(y + 1\right)^{2}} + \frac{x \left(y + 1\right)^{2}}{3} + \frac{\left(y + 1\right)^{6}}{27}}} + \frac{\left(y + 1\right)^{2}}{3} + \sqrt[3]{\frac{x^{2}}{2 \left(y + 1\right)^{2}} + \frac{\sqrt{3} x \sqrt{x \left(27 x + 4 \left(y + 1\right)^{4}\right)}}{18 \left(y + 1\right)^{2}} + \frac{x \left(y + 1\right)^{2}}{3} + \frac{\left(y + 1\right)^{6}}{27}}$$
Pyramid 485
Preview
$$U_{485}(x, y) = \frac{\sqrt{3} \left(- 2 x - \sqrt{1 - 4 x} + 1\right) \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 x^{2} \sqrt{y}}$$
Pyramid 486
Preview
$$U_{486}(x, y) = \frac{\sqrt{3} \sqrt{y} \left(x + \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}}\right)^{2}}{2 \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}$$
Pyramid 487
Preview
$$U_{487}(x, y) = \frac{2 \sqrt{3} \left(x + 1\right)^{2} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}}$$
Pyramid 488
Preview
$$U_{488}(x, y) = \frac{- 4 x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)} + \sqrt{3} \sqrt{y} - \sqrt{- 8 \sqrt{3} x \sqrt{y} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)} + 3 y}}{4 x^{2} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}$$
Pyramid 489
Preview
$$U_{489}(x, y) = \frac{\sqrt{3} \left(\sqrt{3} x \sqrt{y} + \sqrt{2 \sqrt{3} x \sqrt{y} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)} + \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}} + \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}\right)}{3 \sqrt{y}}$$
Pyramid 490
Preview
$$U_{490}(x, y) = \frac{\sqrt{3} \left(\sqrt{3} x \sqrt{y} - \sqrt{2 \sqrt{3} x \sqrt{y} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)} + \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}} + \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}\right)}{3 \sqrt{y}}$$
Pyramid 491
Preview
$$U_{491}(x, y) = \frac{1 - \sqrt{- 4 x \left(y + 1\right)^{3} + 1}}{2 x \left(y + 1\right)^{2}}$$
Pyramid 492
Preview
$$U_{492}(x, y) = x \left(y + 1\right)^{4} + \left(y + 1\right)^{2}$$
Pyramid 493
Preview
$$U_{493}(x, y) = - \frac{\left(y + 1\right)^{2}}{x \left(y + 1\right)^{4} - 1}$$
Pyramid 494
Preview
$$U_{494}(x, y) = \frac{1 - \sqrt{- 4 x \left(y + 1\right)^{6} + 1}}{2 x \left(y + 1\right)^{4}}$$
Pyramid 495
Preview
$$U_{495}(x, y) = \frac{x}{\left(1 - y\right)^{2}} + \frac{1}{1 - y}$$
Pyramid 496
Preview
$$U_{496}(x, y) = - \frac{1}{\left(1 - y\right) \left(\frac{x}{\left(1 - y\right)^{2}} - 1\right)}$$
Pyramid 497
Preview
$$U_{497}(x, y) = \frac{\left(1 - y\right)^{2} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}\right)}{2 x}$$
Pyramid 498
Preview
$$U_{498}(x, y) = \frac{x}{\left(1 - y\right)^{4}} + \frac{1}{\left(1 - y\right)^{2}}$$
Pyramid 499
Preview
$$U_{499}(x, y) = - \frac{1}{\left(1 - y\right)^{2} \left(\frac{x}{\left(1 - y\right)^{4}} - 1\right)}$$
Pyramid 500
Preview
$$U_{500}(x, y) = \frac{\left(1 - y\right)^{4} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{6}} + 1}\right)}{2 x}$$
Page:
1
...
22
23
24
25
26
27
28
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less