Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1001
Preview
$$U_{1001}(x, y) = \frac{4 y^{2}}{\left(1 - \sqrt{1 - 4 y}\right)^{2} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{2 y} + 1\right)}$$
Pyramid 1002
Preview
$$U_{1002}(x, y) = \left(x + 1\right) \left(y + 1\right)^{3}$$
Pyramid 1003
Preview
$$U_{1003}(x, y) = \frac{x + 1}{\left(1 - y\right)^{3}}$$
Pyramid 1004
Preview
$$U_{1004}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \left(x + 1\right)}{8 y^{3}}$$
Pyramid 1005
Preview
$$U_{1005}(x, y) = \frac{\left(x + 1\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Pyramid 1006
Preview
$$U_{1006}(x, y) = \frac{\left(x + 1\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Pyramid 1007
Preview
$$U_{1007}(x, y) = \left(x + 1\right)^{2} \left(y + 1\right)^{2}$$
Pyramid 1008
Preview
$$U_{1008}(x, y) = \left(x + 1\right)^{2} \left(y + 1\right)^{3}$$
Pyramid 1009
Preview
$$U_{1009}(x, y) = \frac{\left(x + 1\right)^{2}}{\left(1 - y\right)^{2}}$$
Pyramid 1010
Preview
$$U_{1010}(x, y) = \frac{\left(x + 1\right)^{2}}{\left(1 - y\right)^{3}}$$
Pyramid 1011
Preview
$$U_{1011}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(x + 1\right)^{2}}{2 y}$$
Pyramid 1012
Preview
$$U_{1012}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \left(x + 1\right)^{2}}{4 y^{2}}$$
Pyramid 1013
Preview
$$U_{1013}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \left(x + 1\right)^{2}}{8 y^{3}}$$
Pyramid 1014
Preview
$$U_{1014}(x, y) = \left(y + 1\right) \sqrt{4 x \left(y + 1\right)^{3} + 1}$$
Pyramid 1015
Preview
$$U_{1015}(x, y) = \frac{\left(x + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Pyramid 1016
Preview
$$U_{1016}(x, y) = \frac{\left(x + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Pyramid 1017
Preview
$$U_{1017}(x, y) = \left(x + 1\right)^{3} \left(y + 1\right)$$
Pyramid 1018
Preview
$$U_{1018}(x, y) = \left(x + 1\right)^{3} \left(y + 1\right)^{2}$$
Pyramid 1019
Preview
$$U_{1019}(x, y) = \left(x + 1\right)^{3} \left(y + 1\right)^{3}$$
Pyramid 1020
Preview
$$U_{1020}(x, y) = \frac{\left(x + 1\right)^{3}}{1 - y}$$
Page:
1
...
48
49
50
51
52
53
54
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less