Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1041
Preview
$$U_{1041}(x, y) = \frac{\left(y + 1\right)^{2}}{\left(1 - x\right)^{3}}$$
Pyramid 1042
Preview
$$U_{1042}(x, y) = \frac{\left(y + 1\right)^{3}}{\left(1 - x\right)^{3}}$$
Pyramid 1043
Preview
$$U_{1043}(x, y) = \frac{1}{\left(1 - x\right)^{3} \left(1 - y\right)}$$
Pyramid 1044
Preview
$$U_{1044}(x, y) = \frac{1}{\left(1 - x\right)^{3} \left(1 - y\right)^{2}}$$
Pyramid 1045
Preview
$$U_{1045}(x, y) = \frac{1}{\left(1 - x\right)^{3} \left(1 - y\right)^{3}}$$
Pyramid 1046
Preview
$$U_{1046}(x, y) = \frac{1 - \sqrt{1 - 4 y}}{2 y \left(1 - x\right)^{3}}$$
Pyramid 1047
Preview
$$U_{1047}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2} \left(1 - x\right)^{3}}$$
Pyramid 1048
Preview
$$U_{1048}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(1 - x\right)^{3}}$$
Pyramid 1049
Preview
$$U_{1049}(x, y) = 2 x \left(y + 1\right)^{3} + \left(y + 1\right) \sqrt{4 x^{2} \left(y + 1\right)^{4} + 1}$$
Pyramid 1050
Preview
$$U_{1050}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4} \left(1 - x\right)^{3}}$$
Pyramid 1051
Preview
$$U_{1051}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6} \left(1 - x\right)^{3}}$$
Pyramid 1052
Preview
$$U_{1052}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(y + 1\right)^{3}}{2 x}$$
Pyramid 1053
Preview
$$U_{1053}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(1 - \sqrt{1 - 4 y}\right)^{2}}{8 x y^{2}}$$
Pyramid 1054
Preview
$$U_{1054}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(1 - \sqrt{1 - 4 y}\right)^{3}}{16 x y^{3}}$$
Pyramid 1055
Preview
$$U_{1055}(x, y) = \frac{1}{\sqrt{- 4 x \left(y + 1\right) + 1}}$$
Pyramid 1056
Preview
$$U_{1056}(x, y) = 15661$$ $$U_{1056}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{8 x y^{4}}$$
Pyramid 1057
Preview
$$U_{1057}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{16 x y^{6}}$$
Pyramid 1058
Preview
$$U_{1058}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right)^{2} \left(y + 1\right)^{3}}{4 x^{2}}$$
Pyramid 1059
Preview
$$U_{1059}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right)^{2} \left(1 - \sqrt{1 - 4 y}\right)^{3}}{32 x^{2} y^{3}}$$
Pyramid 1060
Preview
$$U_{1060}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{16 x^{2} y^{4}}$$
Page:
1
...
50
51
52
53
54
55
56
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less