Generating function
$$U_{1001}(x, y) = \frac{4 y^{2}}{\left(1 - \sqrt{1 - 4 y}\right)^{2} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{2 y} + 1\right)}$$
Explicit formula
$$T_{1001}(n, m, k) = \begin{cases}{\binom{k + n - 1}{n}}&\text{if m=0} ,\ \\\frac{\left(- 2 k + n\right) {\binom{k + n - 1}{n}} {\binom{- 2 k + 2 m + n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | -2 | -1 | -2 | -5 | -14 | -42 |
1 | -1 | -1 | -2 | -5 | -14 | -42 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | 2 | 5 | 14 | 42 | 132 | 429 |
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1001?