Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 321
Preview
$$U_{321}(x, y) = \frac{\sqrt{3} \left(\sqrt{3 x y + \sin^{2}{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}} + \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}\right)}{3 \sqrt{x}}$$
Pyramid 322
Preview
$$U_{322}(x, y) = \frac{\sqrt{3} \left(- \sqrt{3 x y + \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}} + \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}\right)}{3 \sqrt{x}}$$
Pyramid 323
Preview
$$U_{323}(x, y) = \frac{2 y + \sqrt{1 - 4 y} + \sqrt{2} \sqrt{4 x y^{3} + 2 y^{2} - 4 y + \sqrt{1 - 4 y} \left(- 4 x y^{3} + 2 y - 1\right) + 1} - 1}{2 y \sqrt{1 - 4 y} - 2 y}$$
Pyramid 324
Preview
$$U_{324}(x, y) = \frac{1}{2} - \frac{\sqrt{4 x y^{3} + 12 x y^{2} + 12 x y + 4 x + 1}}{2}$$
Pyramid 325
Preview
$$U_{325}(x, y) = \frac{1}{\left(x + 1\right) \left(x y + 1\right)}$$
Pyramid 326
Preview
$$U_{326}(x, y) = - \frac{x y}{2} - \frac{x}{2} + \frac{\sqrt{x^{2} y^{2} + x^{2} - 2 x + y \left(- 2 x^{2} - 2 x\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 327
Preview
$$U_{327}(x, y) = \frac{- x + \sqrt{x^{2} + 2 x + y \left(4 x^{2} + 4 x\right) + 1} - 1}{y \left(2 x^{2} + 2 x\right)}$$
Pyramid 328
Preview
$$U_{328}(x, y) = \frac{\sqrt{y \left(4 x^{2} + 8 x + 4\right) + 1} + 1}{2 x + 2}$$
Pyramid 329
Preview
$$U_{329}(x, y) = \frac{1 - \sqrt{y \left(4 x^{2} + 8 x + 4\right) + 1}}{2 x + 2}$$
Pyramid 330
Preview
$$U_{330}(x, y) = - \frac{x}{2} + \frac{y}{2} + \frac{\sqrt{x^{2} - 2 x + y^{2} + y \left(2 x + 2\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 331
Preview
$$U_{331}(x, y) = - \frac{x}{2} + \frac{y}{2} - \frac{\sqrt{x^{2} - 2 x + y^{2} + y \left(2 x + 2\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 332
Preview
$$U_{332}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right) \left(\sqrt{4 y + 1} + 1\right)}{4 x}$$
Pyramid 333
Preview
$$U_{333}(x, y) = - \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4 x - 2 \sqrt{4 y + 1} - 2}$$
Pyramid 334
Preview
$$U_{334}(x, y) = \frac{2 x + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{2}}{\sqrt{4 y + 1} + 1}$$
Pyramid 335
Preview
$$U_{335}(x, y) = \frac{\sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{\sqrt{4 y + 1} + 1}$$
Pyramid 336
Preview
$$U_{336}(x, y) = \frac{- \sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + \frac{\left(\sqrt{4 y + 1} + 1\right)^{4}}{16}} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}{\sqrt{4 y + 1} + 1}$$
Pyramid 337
Preview
$$U_{337}(x, y) = \left(1 - y\right) \left(x + \frac{1}{1 - y}\right)^{2}$$
Pyramid 338
Preview
$$U_{338}(x, y) = \frac{- y \left(- 2 x^{2} - 2 x\right) - \sqrt{y \left(- 4 x - 4\right) + 1} + 1}{2 x^{2} y^{2} + 2 y}$$
Pyramid 339
Preview
$$U_{339}(x, y) = \frac{\left(x + y + 1\right)^{2}}{y + 1}$$
Pyramid 340
Preview
$$U_{340}(x, y) = \frac{- y \left(2 x + 2\right) - \sqrt{y \left(4 x^{2} + 4 x\right) + 1} + 1}{2 y^{2} - 2 y}$$
Page:
1
...
14
15
16
17
18
19
20
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less