Generating function
$$U_{382}(x, y) = \frac{y}{3} + \frac{\left(y + 1\right)^{2}}{9 \sqrt[3]{\frac{x \left(y + 1\right)}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{2}\right)} \left(y + 1\right)}{18} + \frac{\left(y + 1\right)^{3}}{27}}} + \sqrt[3]{\frac{x \left(y + 1\right)}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + 4 \left(y + 1\right)^{2}\right)} \left(y + 1\right)}{18} + \frac{\left(y + 1\right)^{3}}{27}} + \frac{1}{3}$$
Explicit formula
$$T_{382}(n, m, k) = \begin{cases}1&\text{if m=0, n = 0} ,\ \\\frac{k {\binom{k - 2 n}{m}} {\binom{k - 2 n - 1}{n - 1}}}{n}&\text{if n>0} ,\ \\\frac{k {\binom{k - n - 1}{m - 1}}}{m}&\text{if n=0} \end{cases} $$
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | -1 | 1 | -1 | 1 | -1 | 1 |
-2 | 6 | -12 | 2 | -3 | 42 | -56 |
7 | -35 | 105 | -245 | 49 | -882 | 147 |
-3 | 21 | -84 | 252 | -63 | 1386 | -2772 |
143 | -1287 | 6435 | -23595 | 70785 | -184041 | 429429 |
-728 | 8008 | -48048 | 208208 | -728728 | 2186184 | -5829824 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #382?