Generating function
$$U_{1184}(x, y) = \frac{\frac{2 x}{\left(1 - y\right)^{2}} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{4}} + 1}}{1 - y}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1184}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{k + m + 2 n - 1}{m}}$$
Data table
1 1 1 1 1 1 1
2 6 12 2 3 42 56
2 1 3 7 14 252 42
0 0 0 0 0 0 0
-2 -18 -90 -330 -990 -2574 -6006
0 0 0 0 0 0 0
4 52 364 1820 7280 24752 74256
Export
expand_less