Generating function
$$U_{1184}(x, y) = \frac{\frac{2 x}{\left(1 - y\right)^{2}} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{4}} + 1}}{1 - y}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1184}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{k + m + 2 n - 1}{m}}$$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 6 | 12 | 2 | 3 | 42 | 56 |
2 | 1 | 3 | 7 | 14 | 252 | 42 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -18 | -90 | -330 | -990 | -2574 | -6006 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 52 | 364 | 1820 | 7280 | 24752 | 74256 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1184?