Generating function
$$U_{1388}(x, y) = \frac{1}{\left(1 - y\right) \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}}$$
Explicit formula
$$T_{1388}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{k + m + 3 n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{k + m + 3 n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 1 1 1 1 1 1
2 8 2 4 7 112 168
6 42 168 504 126 2772 5544
2 2 11 44 143 4004 1001
7 91 637 3185 1274 43316 129948
252 4032 34272 205632 976752 3907008 13674528
924 17556 17556 122892 675906 31091676 124366704
Export
expand_less