Generating function
$$U_{1185}(x, y) = \frac{\frac{2 x}{\left(1 - y\right)^{2}} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{4}} + 1}}{\left(1 - y\right)^{2}}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1185}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 k + m + 2 n - 1}{m}}$$
Data table
1 2 3 4 5 6 7
2 8 2 4 7 112 168
2 12 42 112 252 504 924
0 0 0 0 0 0 0
-2 -20 -110 -440 -1430 -4004 -10010
0 0 0 0 0 0 0
4 56 420 2240 9520 34272 108528
Export
expand_less