Generating function
$$U_{1183}(x, y) = \frac{2 x}{\left(1 - y\right)^{4}} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{8}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1183}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{m + 4 n - 1}{m}}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 8 | 2 | 4 | 7 | 112 | 168 |
2 | 16 | 72 | 24 | 66 | 1584 | 3432 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -32 | -272 | -1632 | -7752 | -31008 | -108528 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 96 | 1200 | 10400 | 70200 | 393120 | 1900080 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1183?