Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 881
Preview
$$U_{881}(x, y) = \frac{\left(2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)}}{2} \right)}}{3} \right)}\right) \left(y + 1\right)^{2}}{3 x}$$
Pyramid 882
Preview
$$U_{882}(x, y) = \frac{\left(y + 1\right)^{3}}{\left(- \frac{x}{\left(y + 1\right)^{2}} + 1\right)^{2}}$$
Pyramid 883
Preview
$$U_{883}(x, y) = \frac{2 x + \left(y + 1\right)^{5} + \left(y + 1\right)^{2} \sqrt{4 x + y^{6} + 6 y^{5} + 15 y^{4} + 20 y^{3} + 15 y^{2} + y \left(4 x + 6\right) + 1}}{2 \left(y + 1\right)^{2}}$$
Pyramid 884
Preview
$$U_{884}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x} \operatorname{abs}{\left(y + 1 \right)}}{2} \right)}}{3} \right)}}{3 x \left(y + 1\right)}$$
Pyramid 885
Preview
$$U_{885}(x, y) = \frac{y + 1}{\left(- x \left(y + 1\right) + 1\right)^{2}}$$
Pyramid 886
Preview
$$U_{886}(x, y) = x \left(y + 1\right) + \frac{y}{2} + \frac{\sqrt{4 x + 1} \left(y + 1\right)}{2} + \frac{1}{2}$$
Pyramid 887
Preview
$$U_{887}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x} \operatorname{abs}{\left(y + 1 \right)}}{2} \right)}}{3} \right)}}{3 x}$$
Pyramid 888
Preview
$$U_{888}(x, y) = \frac{\left(1 - \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x} \operatorname{abs}{\left(y + 1 \right)}}{2} \right)}}{3} \right)}\right) \left(2 y + 2\right)}{3 x}$$
Pyramid 889
Preview
$$U_{889}(x, y) = \frac{\left(y + 1\right)^{3}}{\left(- \frac{x}{y + 1} + 1\right)^{2}}$$
Pyramid 890
Preview
$$U_{890}(x, y) = \frac{2 x + \sqrt{4 x + \left(y + 1\right)^{4}} \left(y + 1\right)^{2} + \left(y + 1\right)^{4}}{2 y + 2}$$
Pyramid 891
Preview
$$U_{891}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{1 - y}}}{2} \right)}}{3} \right)}}{3 x}$$
Pyramid 892
Preview
$$U_{892}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{1 - y}}}{2} \right)}}{3} \right)}}{3 x \left(1 - y\right)}$$
Pyramid 893
Preview
$$U_{893}(x, y) = \frac{1}{\left(1 - y\right)^{2} \left(- x \left(1 - y\right) + 1\right)^{2}}$$
Pyramid 894
Preview
$$U_{894}(x, y) = \frac{\left(1 - y\right) \left(2 x + \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{4}}}}{1 - y} + \frac{1}{\left(1 - y\right)^{3}}\right)}{2}$$
Pyramid 895
Preview
$$U_{895}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{1 - y}}}{2} \right)}}{3} \right)}}{3 x \left(1 - y\right)^{2}}$$
Pyramid 896
Preview
$$U_{896}(x, y) = \frac{1}{\left(1 - y\right)^{3} \left(- x \left(1 - y\right)^{2} + 1\right)^{2}}$$
Pyramid 897
Preview
$$U_{897}(x, y) = x \left(1 - y\right)^{2} + \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{6}}}}{2} + \frac{1}{2 \left(1 - y\right)^{3}}$$
Pyramid 898
Preview
$$U_{898}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2 \operatorname{abs}{\left(y - 1 \right)}} \right)}}{3} \right)}}{3 x}$$
Pyramid 899
Preview
$$U_{899}(x, y) = \frac{\left(1 - y\right) \left(2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2 \operatorname{abs}{\left(y - 1 \right)}} \right)}}{3} \right)}\right)}{3 x}$$
Pyramid 900
Preview
$$U_{900}(x, y) = \frac{2 - 2 \cos{\left(\frac{2 \arcsin{\left(\frac{3 \sqrt{3} \sqrt{x}}{2 \operatorname{abs}{\left(y - 1 \right)}} \right)}}{3} \right)}}{3 x \left(1 - y\right)}$$
Page:
1
...
42
43
44
45
46
47
48
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less