Pyramid #883
Generating function
$$U_{883}(x, y) = \frac{2 x + \left(y + 1\right)^{5} + \left(y + 1\right)^{2} \sqrt{4 x + y^{6} + 6 y^{5} + 15 y^{4} + 20 y^{3} + 15 y^{2} + y \left(4 x + 6\right) + 1}}{2 \left(y + 1\right)^{2}}$$
Explicit formula
$$T_{883}(n, m, k) = \begin{cases}{\binom{3 k}{m}}&\text{if n=0} ,\ \\\frac{2 \left(-1\right)^{n - 1} k {\binom{3 k - 5 n}{m}} {\binom{- 2 k + 2 n - 1}{n - 1}}}{n} \end{cases} $$
Data table
1 3 3 1 0 0 0
2 -4 6 -8 1 -12 14
-1 7 -28 84 -21 462 -924
2 -24 156 -728 273 -8736 24752
-5 85 -765 4845 -24225 101745 -373065
14 -308 3542 -28336 1771 -92092 414414
-42 1134 -15876 153468 -115101 7136262 -38060064
Export
expand_less