Generating function
$$U_{894}(x, y) = \frac{\left(1 - y\right) \left(2 x + \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{4}}}}{1 - y} + \frac{1}{\left(1 - y\right)^{3}}\right)}{2}$$
Explicit formula
$$T_{894}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n=0} ,\ \\\frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}} {\binom{2 k + m - 3 n - 1}{m}}}{n} \end{cases} $$
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | -2 | 0 | 0 | 0 | 0 | 0 |
-1 | 4 | -6 | 4 | -1 | 0 | 0 |
2 | -14 | 42 | -7 | 7 | -42 | 14 |
-5 | 5 | -225 | 6 | -105 | 126 | -105 |
14 | -182 | 1092 | -4004 | 1001 | -18018 | 24024 |
-42 | 672 | -504 | 2352 | -7644 | 183456 | -336336 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #894?