Pyramid #894
Generating function
$$U_{894}(x, y) = \frac{\left(1 - y\right) \left(2 x + \frac{\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{4}}}}{1 - y} + \frac{1}{\left(1 - y\right)^{3}}\right)}{2}$$
Explicit formula
$$T_{894}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n=0} ,\ \\\frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}} {\binom{2 k + m - 3 n - 1}{m}}}{n} \end{cases} $$
Data table
1 2 3 4 5 6 7
2 -2 0 0 0 0 0
-1 4 -6 4 -1 0 0
2 -14 42 -7 7 -42 14
-5 5 -225 6 -105 126 -105
14 -182 1092 -4004 1001 -18018 24024
-42 672 -504 2352 -7644 183456 -336336
Export
expand_less