Generating function
$$U_{323}(x, y) = \frac{2 y + \sqrt{1 - 4 y} + \sqrt{2} \sqrt{4 x y^{3} + 2 y^{2} - 4 y + \sqrt{1 - 4 y} \left(- 4 x y^{3} + 2 y - 1\right) + 1} - 1}{2 y \sqrt{1 - 4 y} - 2 y}$$
Explicit formula
$$T_{323}(n, m, k) = \begin{cases}0&\text{if n<k} ,\ \\\frac{\left(-1\right)^{n} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{n} \left(-1\right)^{m - 1} k \left(k - 3 n\right) {\binom{- k + 2 n - 1}{n - 1}} {\binom{- k - m + 3 n - 1}{m - 1}}}{m n} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 2 | 1 | 2 | 5 | 14 | 42 |
1 | -5 | 5 | 0 | 0 | -1 | -5 |
-2 | 16 | -4 | 32 | -4 | 0 | 0 |
5 | -55 | 22 | -385 | 275 | -55 | 0 |
-14 | 196 | -1078 | 294 | -4116 | 2744 | -686 |
42 | -714 | 4998 | -18564 | 3927 | -47124 | 29988 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #323?