Generating function
$$U_{622}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) \left(- 2 x - \sqrt{1 - 4 x} + 1\right)}{2 x^{2}}$$
Explicit formula
$$T_{622}(n, m, k) = \begin{cases}\frac{k {\binom{2 k + 2 n}{n}}}{k + n}&\text{if m=0 } ,\ \\\frac{\left(-1\right)^{m - 1} k^{2} {\binom{2 k + 2 n}{n}} {\binom{- k + 3 m - 1}{m - 1}}}{m \left(k + n\right)}&\text{if m>0} \end{cases} $$
1 | 1 | -2 | 7 | -3 | 143 | -728 |
2 | 2 | -4 | 14 | -6 | 286 | -1456 |
5 | 5 | -1 | 35 | -15 | 715 | -364 |
14 | 14 | -28 | 98 | -42 | 2002 | -10192 |
42 | 42 | -84 | 294 | -126 | 6006 | -30576 |
132 | 132 | -264 | 924 | -396 | 18876 | -96096 |
429 | 429 | -858 | 3003 | -1287 | 61347 | -312312 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #622?