Pyramid #506
Generating function
$$U_{506}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(\sqrt{4 x + 1} + 1\right)}{4 y}$$
Explicit formula
$$T_{506}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 m - 1}{m}}}{k + m}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k^{2} {\binom{- k + 2 n - 1}{n - 1}} {\binom{k + 2 m - 1}{m}}}{n \left(k + m\right)}&\text{if n>0} \end{cases} $$
Data table
1 1 2 5 14 42 132
1 1 2 5 14 42 132
-1 -1 -2 -5 -14 -42 -132
2 2 4 1 28 84 264
-5 -5 -1 -25 -7 -21 -66
14 14 28 7 196 588 1848
-42 -42 -84 -21 -588 -1764 -5544
Export
expand_less