Generating function
$$U_{506}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(\sqrt{4 x + 1} + 1\right)}{4 y}$$
Explicit formula
$$T_{506}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 m - 1}{m}}}{k + m}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k^{2} {\binom{- k + 2 n - 1}{n - 1}} {\binom{k + 2 m - 1}{m}}}{n \left(k + m\right)}&\text{if n>0} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | 1 | 2 | 5 | 14 | 42 | 132 |
-1 | -1 | -2 | -5 | -14 | -42 | -132 |
2 | 2 | 4 | 1 | 28 | 84 | 264 |
-5 | -5 | -1 | -25 | -7 | -21 | -66 |
14 | 14 | 28 | 7 | 196 | 588 | 1848 |
-42 | -42 | -84 | -21 | -588 | -1764 | -5544 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #506?