Pyramid #507
Generating function
$$U_{507}(x, y) = \frac{\left(\sqrt{4 x + 1} + 1\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{4 y^{2}}$$
Explicit formula
$$T_{507}(n, m, k) = \begin{cases}\frac{k {\binom{2 k + 2 m}{m}}}{k + m}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k^{2} {\binom{2 k + 2 m}{m}} {\binom{- k + 2 n - 1}{n - 1}}}{n \left(k + m\right)}&\text{if n>0} \end{cases} $$
Data table
1 2 5 14 42 132 429
1 2 5 14 42 132 429
-1 -2 -5 -14 -42 -132 -429
2 4 1 28 84 264 858
-5 -1 -25 -7 -21 -66 -2145
14 28 7 196 588 1848 6006
-42 -84 -21 -588 -1764 -5544 -18018
Export
expand_less