Generating function
$$U_{505}(x, y) = \frac{\sqrt{4 x + 1} + 1}{2 \left(1 - y\right)^{2}}$$
Explicit formula
$$T_{505}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}} {\binom{2 k + m - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
-1 | -2 | -3 | -4 | -5 | -6 | -7 |
2 | 4 | 6 | 8 | 1 | 12 | 14 |
-5 | -1 | -15 | -2 | -25 | -3 | -35 |
14 | 28 | 42 | 56 | 7 | 84 | 98 |
-42 | -84 | -126 | -168 | -21 | -252 | -294 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #505?