Generating function
$$U_{193}(x, y) = \frac{- \sqrt{1 - 4 y} + \sqrt{2} \sqrt{8 x y^{2} - 2 y - \sqrt{1 - 4 y} + 1} + 1}{4 y}$$
Explicit formula
$$T_{193}(n, m, k) = \begin{cases}1&\text{if m=0 and n=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if n>0} ,\ \\\frac{\left(-1\right)^{m + n - 1} k {\binom{- k + 2 n}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 |
2 | 2 | 2 | 2 | 2 | 2 | 2 |
-5 | -5 | -5 | -5 | -5 | -5 | -5 |
14 | 14 | 14 | 14 | 14 | 14 | 14 |
-42 | -42 | -42 | -42 | -42 | -42 | -42 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #193?