Generating function
$$U_{194}(x, y) = \frac{- \sqrt{1 - 4 y} - \sqrt{2} \sqrt{8 x y^{2} - 2 y - \sqrt{1 - 4 y} + 1} + 1}{4 y}$$
Explicit formula
$$T_{194}(n, m, k) = \begin{cases}0&\text{if n<k} ,\ \\- \frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\- \frac{\left(-1\right)^{m + n - 1} k {\binom{- k + 2 n}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 1 | 1 | 2 | 5 | 14 | 42 |
1 | -3 | 0 | -1 | -3 | -9 | -28 |
-2 | 1 | -1 | 0 | 0 | 2 | 1 |
5 | -35 | 7 | -35 | 0 | 0 | 0 |
-14 | 126 | -378 | 42 | -126 | 0 | 0 |
42 | -462 | 1848 | -3234 | 231 | -462 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #194?