Generating function
$$U_{426}(x, y) = \sqrt[3]{\frac{x}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}}\right)}}{18} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}} + \frac{1 - \sqrt{1 - 4 y}}{6 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{36 y^{2} \sqrt[3]{\frac{x}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}}\right)}}{18} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}}}$$
Explicit formula
$$T_{426}(n, m, k) = \begin{cases}\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}}{n}&\text{if n>0} ,\ \\0&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{m + n - 1} k {\binom{- k + 3 n}{n}} {\binom{- k - m + 3 n - 1}{m - 1}}}{m} \end{cases} $$
0 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
-2 | -2 | -2 | -2 | -2 | -2 | -2 |
7 | 7 | 7 | 7 | 7 | 7 | 7 |
-3 | -3 | -3 | -3 | -3 | -3 | -3 |
143 | 143 | 143 | 143 | 143 | 143 | 143 |
-728 | -728 | -728 | -728 | -728 | -728 | -728 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #426?