Generating function
$$U_{1389}(x, y) = \frac{1}{\left(1 - y\right)^{3} \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}}$$
Explicit formula
$$T_{1389}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{3 k + m + 3 n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{3 k + m + 3 n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 3 6 1 15 21 28
2 12 42 112 252 504 924
6 54 27 99 297 7722 18018
2 24 156 728 273 8736 24752
7 105 84 476 2142 81396 27132
252 4536 43092 28728 150822 6636168 25438644
924 19404 213444 1636404 9818424 4909212 21273252
Related
Export
expand_less