Generating function
$$U_{1383}(x, y) = \frac{1}{\left(1 - y\right)^{2} \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}}$$
Explicit formula
$$T_{1383}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{2 k + m + 3 n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{2 k + m + 3 n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 3 4 5 6 7
2 1 3 7 14 252 42
6 48 216 72 198 4752 10296
2 22 132 572 2002 6006 16016
7 98 735 392 1666 59976 189924
252 4284 38556 244188 122094 5127948 18802476
924 1848 19404 142296 818202 39273696 1636404
Related
Export
expand_less