Generating function
$$U_{1384}(x, y) = \frac{1}{\left(1 - y\right)^{3} \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1}}$$
Explicit formula
$$T_{1384}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{3 k + m + 2 n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{3 k + m + 2 n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 3 6 1 15 21 28
2 1 3 7 14 252 42
6 42 168 504 126 2772 5544
2 18 9 33 99 2574 6006
7 77 462 2002 7007 21021 56056
252 3276 22932 11466 45864 1559376 4678128
924 1386 11088 62832 282744 10744272 3581424
Related
Export
expand_less