Generating function
$$U_{1382}(x, y) = \frac{1}{\left(1 - y\right)^{3} \sqrt{- \frac{4 x}{1 - y} + 1}}$$
Explicit formula
$$T_{1382}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{3 k + m + n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{3 k + m + n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 3 6 1 15 21 28
2 8 2 4 7 112 168
6 3 9 21 42 756 126
2 12 42 112 252 504 924
7 49 196 588 147 3234 6468
252 2016 9072 3024 8316 199584 432432
924 8316 4158 15246 45738 1189188 2774772
Related
Export
expand_less