Generating function
$$U_{1382}(x, y) = \frac{1}{\left(1 - y\right)^{3} \sqrt{- \frac{4 x}{1 - y} + 1}}$$
Explicit formula
$$T_{1382}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{3 k + m + n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{3 k + m + n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 3 | 6 | 1 | 15 | 21 | 28 |
2 | 8 | 2 | 4 | 7 | 112 | 168 |
6 | 3 | 9 | 21 | 42 | 756 | 126 |
2 | 12 | 42 | 112 | 252 | 504 | 924 |
7 | 49 | 196 | 588 | 147 | 3234 | 6468 |
252 | 2016 | 9072 | 3024 | 8316 | 199584 | 432432 |
924 | 8316 | 4158 | 15246 | 45738 | 1189188 | 2774772 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1382?