Generating function
$$U_{1381}(x, y) = \frac{1}{\left(1 - y\right)^{2} \sqrt{- \frac{4 x}{1 - y} + 1}}$$
Explicit formula
$$T_{1381}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{2 k + m + n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{2 k + m + n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 6 | 12 | 2 | 3 | 42 | 56 |
6 | 24 | 6 | 12 | 21 | 336 | 504 |
2 | 1 | 3 | 7 | 14 | 252 | 42 |
7 | 42 | 147 | 392 | 882 | 1764 | 3234 |
252 | 1764 | 7056 | 21168 | 5292 | 116424 | 232848 |
924 | 7392 | 33264 | 11088 | 30492 | 731808 | 1585584 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1381?