Generating function
$$U_{1381}(x, y) = \frac{1}{\left(1 - y\right)^{2} \sqrt{- \frac{4 x}{1 - y} + 1}}$$
Explicit formula
$$T_{1381}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{2 k + m + n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{2 k + m + n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 3 4 5 6 7
2 6 12 2 3 42 56
6 24 6 12 21 336 504
2 1 3 7 14 252 42
7 42 147 392 882 1764 3234
252 1764 7056 21168 5292 116424 232848
924 7392 33264 11088 30492 731808 1585584
Related
Export
expand_less