Generating function
$$U_{1380}(x, y) = \frac{1}{\left(1 - y\right) \sqrt{- \frac{4 x}{1 - y} + 1}}$$
Explicit formula
$$T_{1380}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{\frac{k}{2} + n - 1}{n}} {\binom{k + m + n - 1}{m}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}} {\binom{k + m + n - 1}{m}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 1 1 1 1 1 1
2 4 6 8 1 12 14
6 18 36 6 9 126 168
2 8 2 4 7 112 168
7 35 105 245 49 882 147
252 1512 5292 14112 31752 63504 116424
924 6468 25872 77616 19404 426888 853776
Export
expand_less