Generating function
$$U_{1140}(x, y) = \frac{2 x + \sqrt{4 x^{2} + 1}}{1 - y}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1140}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{k + m - 1}{m}}$$
Data table
1 1 1 1 1 1 1
2 2 2 2 2 2 2
2 2 2 2 2 2 2
0 0 0 0 0 0 0
-2 -2 -2 -2 -2 -2 -2
0 0 0 0 0 0 0
4 4 4 4 4 4 4
Export
expand_less