Generating function
$$U_{1182}(x, y) = \frac{2 x}{\left(1 - y\right)^{3}} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{6}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1182}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{m + 3 n - 1}{m}}$$
Data table
1 0 0 0 0 0 0
2 6 12 2 3 42 56
2 12 42 112 252 504 924
0 0 0 0 0 0 0
-2 -24 -156 -728 -2730 -8736 -24752
0 0 0 0 0 0 0
4 72 684 4560 23940 105336 403788
Export
expand_less