Generating function
$$U_{1100}(x, y) = \frac{\left(- 2 x - \sqrt{1 - 4 x} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{32 x^{6} y^{4}}$$
Explicit formula
$$T_{1100}(n, m, k) = \frac{6 k^{2} {\binom{4 k + 2 m}{m}} {\binom{6 k + 2 n}{n}}}{\left(2 k + m\right) \left(3 k + n\right)}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
6 | 24 | 84 | 288 | 99 | 3432 | 12012 |
27 | 108 | 378 | 1296 | 4455 | 15444 | 54054 |
11 | 44 | 154 | 528 | 1815 | 6292 | 22022 |
429 | 1716 | 6006 | 20592 | 70785 | 245388 | 858858 |
1638 | 6552 | 22932 | 78624 | 27027 | 936936 | 3279276 |
6188 | 24752 | 86632 | 297024 | 102102 | 3539536 | 12388376 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1100?