Generating function
$$U_{1101}(x, y) = \frac{\left(- 2 x - \sqrt{1 - 4 x} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{64 x^{6} y^{6}}$$
Explicit formula
$$T_{1101}(n, m, k) = \frac{9 k^{2} {\binom{6 k + 2 m}{m}} {\binom{6 k + 2 n}{n}}}{\left(3 k + m\right) \left(3 k + n\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
6 | 36 | 162 | 66 | 2574 | 9828 | 37128 |
27 | 162 | 729 | 297 | 11583 | 44226 | 167076 |
11 | 66 | 297 | 121 | 4719 | 18018 | 68068 |
429 | 2574 | 11583 | 4719 | 184041 | 702702 | 2654652 |
1638 | 9828 | 44226 | 18018 | 702702 | 2683044 | 10135944 |
6188 | 37128 | 167076 | 68068 | 2654652 | 10135944 | 38291344 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1101?